Part Number Hot Search : 
ISL3873B ZVP4105A MPC74 CSC1220A X55C27 MIW3131 IRF73 SCB68175
Product Description
Full Text Search
 

To Download IR2111 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet No. PD60028-L
IR2111(S)
HALF-BRIDGE DRIVER
Features
* Floating channel designed for bootstrap operation * * * * * *
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels CMOS Schmitt-triggered inputs with pull-down Matched propagation delay for both channels Internally set deadtime High side output in phase with input
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 200 mA / 420 mA 10 - 20V 750 & 150 ns 650 ns
Description
The IR2111(S) is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for half-bridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Packages
8-Lead PDIP
8-Lead SOIC
Typical Connection
up to 600V VCC
VCC
IN
VB HO VS
TO LOAD
IN COM LO
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2111(S)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in figures 7 through 10.
Symbol
VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL
Definition
High side floating supply voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Allowable offset supply voltage transient (figure 2) Package power dissipation @ TA +25C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 -- -- -- -- -- -- -55 --
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W C/W
C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Ambient temperature
Min.
VS + 10 Note 1 VS 10 0 0 -40
Max.
VS + 20 600 VB 20 VCC VCC 125
Units
V
C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
2
www.irf.com
IR2111(S)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in figure 3.
Symbol
ton toff tr tf DT MT
Definition
Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-off to LS turn-on Delay matching, HS & LS turn-on/off
Min. Typ. Max. Units Test Conditions
550 -- -- -- 480 -- 750 150 80 40 650 30 950 180 130 65 820 -- ns VS = 0V VS = 600V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH
Definition
Logic "1" input voltage for HO & logic "0" for LO
Min. Typ. Max. Units Test Conditions
6.4 9.5 12.6 -- -- -- -- -- -- -- -- -- 50 70 30 -- 8.6 8.2 8.6 8.2 250 500 -- -- -- 3.8 6.0 8.3 100 100 50 100 180 50 1.0 9.6 9.2 9.6 9.2 -- mA -- VO = 0V, VIN = VCC PW 10 s VO = 15V, VIN = 0V PW 10 s V A mV V VCC = 10V VCC = 15V VCC = 20V VCC = 10V VCC = 15V VCC = 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or VCC VIN = 0V or VCC VIN = VCC VIN = 0V
VIL
Logic "0" input voltage for HO & logic "1" for LO
-- -- --
VOH VOL ILK IQBS IQCC IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO-
High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic "1" input bias current Logic "0" input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current
-- -- -- -- -- -- -- 7.6 7.2 7.6 7.2 200 420
www.irf.com
3
IR2111(S)
Functional Block Diagram
VB UV DETECT DEAD TIME PULSE GEN IN UV DETECT
HV LEVEL SHIFT
R Q R S VS HO
PULSE FILTER
VCC
LO DEAD TIME COM
Lead Definitions
Symbol Description
IN VB HO VS VCC LO COM Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
Lead Assignments
8 Lead DIP
8 Lead SOIC
IR2111 Part Number
4
IR2111S
www.irf.com
IR2111(S)
IN
HO
LO
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
IN(LO)
50% 50%
IN(HO)
ton tr 90% toff 90% tf
LO HO
Figure 3. Switching Time Test Circuit
10%
10%
Figure 4. Switching Time Waveform Definition
50%
50%
IN (LO)
50% 50%
IN
IN (HO)
90%
LO
HO
10%
HO LO
90%
10% DT
MT
MT 90%
10%
Figure 5. Deadtime Waveform Definitions
LO
HO
Figure 6. Delay Matching Waveform Definitions
www.irf.com
5
IR2111(S)
1500
1500 Turn-On Delay Time (ns)
M ax. T yp. Mi n.
Turn-On Delay Time (ns)
1250 1000 750 500 250 0 -50 -25 0 25 50
o
1250 Max. 1000 750 500 250 0 Typ. Min.
75
100
125
10
12
14
16
18
20
Temperature ( C)
V BIA S Supply V oltage (V)
Figure 11A Turn-On Time vs Temperature
400 Turn-Off Delay Time (ns)
Figure 11B Turn-On Time vs Voltage
400 Turn-Off Delay Time (ns) 350 300 250 200 150 100 50 0 10 12 14 16 18 20
Typ Max
350 300 250 200 150 100 50 0 -50 -25 0 25 50 Temperature (C) 75 100 125
Typ Max
VBIAS Supply Voltage (V)
Figure 12A Turn-Off Time vs Temperature
400 350 Turn-On rise Time (ns) 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125
Typ Max
Figure 12B Turn-Off Time vs Voltage
400 350 Turn-On Rise Time (ns) 300 250 200 150 100
Typ Max
50 0 10 12 14 16 18 20 V B IA S Supply V oltage (V )
Temperature (C)
Figure 13A Turn-On RiseTime vs Temperature
Figure 13B Turn-On RiseTime vs Voltage
6
www.irf.com
IR2111(S)
200 Turn -Off Fall Time (ns)
200
100
Turn-Off Fall Time (ns)
150
150
Max
100
Max
50
Typ
50
Typ
0 -50 -25 0 25 50 75 Temperature (C) 100 125
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 14A Turn-Off Fall Time vs Temperature
Figure 14B Turn-Off Fall Time vs Voltage
1250 1000 Deadtime (ns) 750 500 250 0 -50
M ax.
1250 1000 Deadtime (ns) 750 500 250 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Figure 15B Dead Time vs Voltage
15 Logic " 1 " Input Treshold (V) 12
Max. Typ. Min.
Typ. Mi n.
Temperature (oC)
Figure 15A Dead Time vs Temperature
Logic "1" Input Threshold (V) 15 12
Min
Min
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10
3
3
6
6
9
9
12
14
16
18
20
Figure 16A Logic "I" Input voltage for HO & Logic "0" for LO vs Temperature
Figure 16B Logic "I" Input voltage for HO & Logic "0" for LO vs Voltage
www.irf.com
7
IR2111(S)
Logic " 0 " Input Treshold (V)
15 Logic "0" Input Threshold (V) 12 9
Max
9
12
15
Max
6 3 0 -50 -25 0 25 50 Temperature (C) 75 100 125
0 10
3
6
12
14
16
18
20
VCC Logic Supply Voltage (V)
Figure 17A Logic "0" Input voltage for HO & Logic "I" for LO vs Temperature
Figure 17B Logic "0" Input voltage for HO & Logic "I" for LO vs Voltage
1 H igh Level O utput V oltage (V ) 0.8 0.6 0.4 M ax. 0.2 0
1 H igh Level O utput V oltage (V ) 0.8 0.6 0.4 M ax. 0.2 0 -50 -25 0 25 50 75 100 125
10
12
14
16
18
20
T e m p e ra tu re
Figure 18A. High Level Output vs. Temperature
Low Level Output Voltage (V)
Low Level Output Voltage (V)
V B A IS S upply V otage (V )
Figure 18B. High Level Output vs. Voltage
1 0.8 0.6 0.4 Max. 0.2 0 10 12 14 16 18 20
1 0.8 0.6 0.4
Max.
0.2 0 -50
-25
0
25
50
75
100
125
Temperature (C)
VBIAS Supply Votage (V)
Figure 19B. Low Level Output vs. Voltage
Figure 19A. Low Level Output vs. Temperature
8
www.irf.com
IR2111(S)
Offset Supply Leakage Current (uA) Offset Supply Leakage Current (uA) 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Max. 500 400 300 200 M ax . 100 0 0 100 200 300 400 500 600
Temperature (C)
V B B oos t V oltage (v)
Figure 20A Offset Supply Current vs Temperature
200 VBS Supply Current (uA)
Figure 20B Offset Supply Current vs Voltage
200 VBS Supply Current (uA)
150 Max. 100 Typ. 50
150 Max. 100 Typ. 50
0 -50 -25 0 25 50 75 100 125 Temperature (C)
0 10 12 14 16 18 20
VBS Floating Supply Voltage (V)
Figure 21A VBS Supply Current vs Temperature
500 Vcc Supply Current (uA)
Figure 21B VBS Supply Current vs Voltage
500 V cc S upply C urrent (uA ) 400 300 200 100
Typ Max
400 300 Max. 200 100 0 -50 -25 0 25 50 75 100 125 Temperature (C) Typ.
0 10 12 14 16 18 20
V cc F ixed S upply V oltage (V )
Figure 22A VCC Supply Current vs Temperature
Figure 22B VCC Supply Current vs Voltage
www.irf.com
9
IR2111(S)
Logic "1 " Input Bias Current (uA) 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 Temperature (C) Logic " 1" Input Bias Current (uA) 120 100 80 60 40 20 0 10 12 14 16 18 20 VCC Supply Voltage (V) Typ. Max.
Figure 23A Logic "1" Input Current vs Temperature
5 Logic "0" Input Bias Current (uA) 4 3 2
Figure 23B Logic "1" Input Current vs VCC Voltage
Logic "0" Input Current (uA) 5 4 3 2 1 0 10 12 14 16 18 20 Max.
Max.
1 0 -50 -25 0 25 50 75 100 125
Temperature (C)
VCC Supply Voltage (V)
Figure 24A. Logic "0" Input Current vs. Temperature
12 VBS UVLO Threshold +(V)
Figure 24B. Logic "0" Input Current vs. VCC Voltage
12 V B S U V LO Threshol -(V ) d 11 10 9 8 7 6 Mi n. M ax. Typ.
11 Max. 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (C) Min. Typ.
-50
-25
0
25
50
75
100
125
Tem perature (C )
Figure 25 VBS Undervoltage Threshold (+) vsTemperature
Figure 26 VBS Undervoltage Threshold (-) vsTemperature
10
www.irf.com
IR2111(S)
11 Vcc Undervoltage Lockout +(V) 10 9 8 7 6 -50
VCC Undervoltage Lockout - (V) 11 10
Max. Typ. Min.
Max.
9
Typ.
8
Min.
7 6
-25
0
25
50
75
100
125
-50
-25
0
25
50
75
100
125
Temperature (C)
Figure 27 VCC Undervoltage (-) vs Temperature
500
Temperature (C)
Figure 28 VCC Undervoltage (-) vs Temperature
500 Output source Current (mA) 400
Typ.
Output source Current (mA)
400 300
300 200 100 0
Min.
Typ.
200
Min.
100 0 -50 -25 0 25 50 75 100 125 Temperature (C)
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 29B Output Source Current vs Voltage
750 Output Sink Current (mA) 600
Figure 29A Output Source Current vs Temperature
750 Output Sink Current (mA) 600
Typ.
450 300 150 0 -50 -25 0 25 50 75 100 125 Temperature (C)
Typ.
450 300 150 0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Min.
Min.
Figure 30A Output Sink Current vs Temperature
Figure 30B Output Sink Current vs Voltage
www.irf.com
11
IR2111(S)
320V 160V
150 Ju n ctio n T e m p e ratu re (C ) 125 100 75 50 25 0 1E+2
320 Ju n ctio n T e m p e ratu re (C )
150 125
160 30V
100 30V 75 50 25 0 1E+2
1E+3
1E+4
Frequency (Hz)
1E+5
1E+6
1E+3
1E+4
Frequency (Hz)
1E+5
1E+6
Figure 31. IR2111 TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V
Figure 32. IR2111 TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V
150 Ju n ctio n T e m p e ratu re (C ) 125 100 75 50 25 0 1E+2
320V 160V 30V
Ju n ctio n T e m p e ratu re (C )
150 125 100 75 50 25 0 1E+2
320V 160V 30V
1E+3
1E+4
Frequency (Hz)
1E+5
1E+6
1E+3
1E+4
Frequency (Hz)
1E+5
1E+6
Figure33. IR2111 TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V
Figure 34. IR2111 TJ vs. Frequency (IRFPC50) RGATE = 10, VCC = 15V
12
www.irf.com
IR2111(S)
320V 150 125 Ju n ctio n T e m p e ratu re (C )
Ju n ctio n T e m p e ratu re (C ) 320V 140V
160
150 125 100 75 50 25 0 1E+2 30V
100 75 50 25 0 1E+2 30V
1E+3
1E+4
1E+5
1E+6
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Frequency (Hz)
Figure 35. IR2111S TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V
Figure 36. IR2111S TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V
320V 140V 150 125 Ju n ctio n T e m p e ratu re (C ) 100 75 50 25 0 1E+2
Ju n ctio n T e m p e ratu re (C )
320V 140V 30V
30V
150 125 100 75 50 25 0 1E+2
1E+3
1E+4
1E+5
1E+6
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Frequency (Hz)
Figure 37. IR2111S TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V
Figure 38. IR2111S TJ vs. Frequency (IRFPC50) RGATE = 10, VCC = 15V
www.irf.com
13
IR2111(S)
Case outlines
8-Lead PDIP
D A 5 B
FOOTPRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
DIM A b c D
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45
8X b 0.25 [.010]
NOTES:
A1 CAB
8X L 7
8X c
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8-Lead SOIC
14
01-6027 01-0021 11 (MS-012AA)
Data and specifications subject to change without notice.
4/18/2003
www.irf.com


▲Up To Search▲   

 
Price & Availability of IR2111

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X